보도자료

미래를 개척하는 지식 공동체 서울대학교 SEOUL NATIONAL UNIVERSITY

보도일시	즉시
	2023. 11. 7.(화)
문의	연구책임자: 농생명공학부 이승환 교수 (02-880-4703) / 교신저자
	연구진: 이승현 박사 (02-880-4691) / 제1저자

물을 배수할 수 있는 구조를 통해 채집된 샘플의 DNA 분해를 방지하는 기능을 탑재하고 3D프린터로 제작 가능한 곤충 채집 트랩(WET) 개발

The Water-Exclusion Trap (WET): A 3D printable window trap collector that prevents DNA degradation
■ 요약

연구 필요성	곤충을 연구하는데 있어 그 연구재료인 곤충을 효과적으로 채집하는 방법 은 매우 중요하다. 기존의 비행간섭트랩(윈도우트랩)은 곤충의 비행 경로를 차단하여 보존 액이 담긴 수거용기로 곤충이 떨어지도록 유도하는 원리의 트랩이며, 특히 딱정벌 레목에 속하는 곤충의 채집에 있어 매우 효율적인 채집 방법이다.
	그러나, 현장에 설치된 트랩 특성상 이 트랩의 가장 큰 문제점은 비, 이슬, 결로 등의 수분이 수거용기로 유입되어 보존액을 희석시키게 되고, 샘플의 부패와 DNA의 질을 크게 저하시킨다는 점이다. 가장 큰 원인인 비를 막아주는 지붕을 부속으로 설치하는 등의 많은 개선 시도에도 근본적인 문제는 해결되지 않았다.
	샘플의 부패가 진행되면 형태적으로 분리가 되며, 결국 올바른 종 동정을 하는데 어려움이 있다. 또한 고품질의 DNA 정보가 현재 분류·계통·진화·생태학 분야에서 필수적인 요소로 자리매김한 현 시점에서 보다 신선하고 오염되지 않은 샘플의 확보는 본 연구 분야에서 반드시 필요한 부분이다.
	본 연구는 비행간섭트랩을 운영하면서 발생하는 샘플의 부패 및 DNA의 분해와 관련된 요소들을 구조적, 물리적으로 최소화할 수 있도록 개선하였다. 개선된 'WET'으로 수거된 샘플들은 육안으로도 부패가 거의 없었으며, 양질의 DNA 정보를 얻을 수 있음을 실험으로 확인하였다.
연구성과/ 기대효과	고품질의 DNA 정보가 분류·계통·진화·생태학 분야에서 필수적으로 사용되는 현 시점에서 개선된 비행간섭트랩인 'WET'는 현장의 생물학자들에게 '고품질 DNA가 보존된 샘플 확보'를 가능하게 해줄 것으로 기대된다.
	본 연구는 연구재단 보호연구과제의 지원을 받아 Methods in Ecology and Evolution에 게재 되었다.

■ 본문

□ 딱정벌레목 곤충의 채집에 매우 효율적인 비행간섭트랩의 문제점 확인

- o 비행을 하다가 무언가에 부딪히면 아래로 떨어지는 딱정벌레 등 곤충의 특성(Fig.1-A)을 이용한 비행간섭트랩은 매우 효율적인 채집방법이지만 빗물, 이슬, 결로 등의 외부에서 유입되는 수분에 의해 보존액이 희석되어 부패가 진행되는 단점이 있어 장기간 운영하기 어렵다.
- o 일차적인 분류 동정을 하기 위해서도 형태가 온전히 유지된 샘플이 필요하며, 더욱이 양질의 DNA 정보가 가장 중요한 연구재료인 분류·계통·진화·생태학 분야에서 이 문제점은 반드시 개선이 필요하다.

□ 구조적인 개선을 통해 'WET' 개발

- o 외부에서 유입된 수분은 수거 파트의 부위에 설치한 미세한 메쉬를 통해 아래로 흘러나가고, 메쉬를 빠져나가지 못하고 안에 갇힌 딱정벌레 등의 곤충은 내부를 배회하다 결국 보존액이 들 어있는 수거용기로 빠지게 되는 구조를 통해 수분 유입으로 인한 문제점을 개선하였다.
- o 메쉬를 손상시켜 아래로 탈출할 곤충은 없었으며, 내부 판에 기울기를 줌으로써 수거용기로 떨어지는 것을 유도할 수 있도록 하였다. 보존액에 빠지지 않고 트랩에 갇혀 있는 샘플은 없었으며, 상부의 구조는 동일했기 때문에 기존 방식의 비행간섭트랩과 효율성의 차이가 없었다.

□ 'WET'의 구체적인 효과 규명

- o 채집된 샘플들은 개선된 구조가 적용되지 않은 기존 트랩과 육안으로도 비교하여도 부패가 거의 진행되지 않은 것을 확인하였다.
- o DNA를 추출하여 그 양과 질을 확인할 수 있는 PCR 실험과 Genomic DNA ScreenTape 분석을 함께 병행하였다. PCR의 성공률과 DIN (DNA Integrity Number)의 값을 비교해본 결과, 기존의 트 랩보다 개선된 'WET'에서 확연히 더 높은 성공률과 값을 확인하였다.

□ 'WET'의 기대효과

- o 최근 분류·계통·진화·생태학 등 각종 곤충학 분야에서 DNA를 기반으로 하는 연구가 크게 발전하고 있다. 트랩을 통해 효율적인 샘플의 '양'을 채집할 수 있으며, WET을 통해 샘플의 '질'까지함께 확보할 수 있기 때문에 곤충학 및 그 관련 분야에서 매우 유용하게 활용될 수 있다.
- o 특히 향후 집중적인 연구가 필요한 열대 우림에서는 물의 유입을 막아주는 WET의 중요성이 더욱 커질 것으로 보인다.

□ 연구결과

The Water-Exclusion Trap (WET): A 3D printable window trap collector that prevents DNA degradation

Lee, S., Seung, J., Yang, Y., Orr, M., Lee, M., Tak, J.H., Vogler, A.P., Bai, M. and Lee, S Methods in Ecology and Evolution (in press)

곤충 연구에 있어 효율적인 곤충 채집방법은 가장 중요한 요소 중 하나이다. 비행간섭트랩은 딱정벌레목 등의 곤충을 채집하는데 매우 효율적인 트랩이지만 장기간 운영하였을 때 샘플 및 그 DNA가 손상된다는 단점이 있다. 최근 각 곤충학 분야에서 가장 중요한 재료 중 하나는 양질의 DNA이며, 기존 비행간섭트랩을 개선한 'WET'은 이 단점을 개선하여 고품질의 DNA와 샘플을 채집할 수 있다.

□ 용어설명

o WET: 'Water-Exclusion Trap'의 약자로, 외부에서 유입되는 물을 배재한 트랩을 의미한다.

o DIN : 'DNA Integrity Number'의 약자로, DNA가 분해되지 않고 남아있는 수치를 의미하며 값이

높을수록 더 양질의 DNA로 인식할 수 있다.