보도자료

보도일시	즉시보도			
	2024. 7. 10.(수)			
문의	담당자: 김은희 직원(02-3668-7389)			
	연구단장/연구책임자 서울대 묵인희 교수(02-3668-7636) / 교신저자			
	연구단/연구진 성균관대 박종찬 교수(031-299-4795), 서울대 한종원 연구원 (02-3668-7614) / 공동 제1저자			

■ 제목/부제

제목	국문	서울대-성균관대, 알츠하이머병 미세아교세포의 베타-아밀로이드 섭식 메커니즘 밝혀
부제	국문	뇌 내 미세아교세포의 TREM2를 통해 알츠하이머병의 베타아밀로이드를 제거함을 밝혀

■ 요약

연구 필요성	미세아교세포는 알츠하이머병과 같은 신경질환의 병변지역에서 면역세포로 매우
	중요한 역할을 한다. 본 연구는 알츠하이머병 진행 중 미세아교세포 표면에 존재
	하는 TREM2가 신경세포 외부의 ePtdSer (외부화된 포스파티딜세린)과 함께 있는
	베타아밀로이드를 인지하여 제거함을 밝혔다. 이를 통해 알츠하이머병의 미세아교
	세포를 타겟으로 하는 치료 전략 개발에 중요한 단서를 제공하였다.
	본 연구를 통해 미세아교세포의 TREM2 수용체가 베타아밀로이드로 유발된 신경
	세포의 ePtdSer 부위를 인지하여 ePtdSer과 공존하는 베타아밀로이드를 제거하는
	데 핵심적인 역할을 한다는 것을 규명하였다. 즉, TREM2와 베타아밀로이드의 상
연구성과/	호작용이 외적인 요인에 의해 규제되며, 그 중에서도 ePtdSer의 역할이 크다는 새
기대효과	로운 기전을 제시하였다. 이로 인해 알츠하이머병 진행 중 ePtdSer의 존재와 관련
	하여 아밀로이드 플라크 주변에서 TREM2 의존성 미세아교세포의 식균작용에 대
	한 새로운 통찰력을 얻게 되었으며, 이 연구결과는 알츠하이머병의 면역세포 기반
	치료제 개발에 새로운 전망을 제공할 것으로 기대된다.
	Microglia play a critical role as immune cells in the pathological regions of
Abstract (영문)	neurodegenerative diseases such as Alzheimer's disease (AD). This study
	elucidates that TREM2, present on the surface of microglia, recognizes and
	clears beta-amyloid associated with externalized phosphatidylserine (ePtdSer)

during AD progression. Our findings highlight the pivotal role of the TREM2 receptor on microglia in identifying and eliminating beta-amyloid in conjunction with ePtdSer on neurons affected by AD. Specifically, the interaction between TREM2 and beta-amyloid is regulated by external factors, with ePtdSer playing a significant role. This new mechanism suggests that the presence of ePtdSer influences TREM2-dependent phagocytosis of microglia around amyloid plaques in AD. These insights offer promising directions for the development of immune cell-based therapeutic strategies targeting microglia in Alzheimer's disease.

Journal Link

<u>Microglia Gravitate toward Amyloid Plaques Surrounded by Externalized</u>

Phosphatidylserine via TREM2 - Park - Advanced Science - Wiley Online Library

■ 본문

- □ 서울대학교 의과대학 묵인희 교수 연구팀과 성균관대 생명물리학과 박종찬 교수 연구팀은 알 츠하이머병 진행 중 ePtdSer의 존재와 관련하여 아밀로이드 플라크 주변에서 TREM2 의존성 미세아교세포의 식균작용에 대한 새로운 메커니즘을 규명하였다.
- □ 과학기술정보통신부 및 보건복지부의 재원으로 치매극복연구개발사업단 (Korea Dementia Research Center, KDRC)의 지원 및 한국연구재단 뇌과학선도융합기술개발사업의 지원을 받아수행한 이번 연구성과는 국제저명학술지인「어드밴스 사이언스 (Advanced science)」에 게재되었다 (2024년 7월 9일).
- o 논문명: Microglia gravitate toward amyloid plaques surrounded by externalized phosphatidylserine via TREM2
- □ 알츠하이머병(AD)은 인지장애와 기억 손상을 나타내는 퇴행성 뇌 질환으로, 뇌 내 베타 아밀로이드(Aβ)와 타우 단백질의 과도한 축적이 특징이다. 이러한 축적은 신경세포의 손상과 지속적인 신경염증 반응을 초래한다.
- □ 미세아교세포는 뇌와 척수의 주요 신경아교세포로, 정상적인 뇌 기능 유지와 신경 보호에 중요한역할을 하며 과도한 시냅스를 제거하고, A β 및 신경섬유 엉킴을 제거하는 데 기여한다. 최근 연구에 따르면, 미세아교세포는 뉴런 표면에 노출된 외부화된 포스파티딜세린(ePtdSer)을 인식하여 시냅스를 가지치기하며, 이 과정은 TREM2 수용체에 의해 조절된다. 그럼에도 불구하고 A β 플라크의 TREM2 매개 식세포작용의 원동력은 아직 알려지지 않았다.
- □ 연구팀은 본 연구를 통해 2D/3D/4D (알츠하이머병 환자 유래 iPSC 유래 미세아교세포, iPSC 유래 뉴런, 뉴런 미세아교세포 공배양 시스템, 뇌 어셈블로이드) 첨단 배양 시스템을 사용하여 미세아교세포의 TREM2를 통한 Aβ의 제거가 Aβ 플라크를 둘러싼 영양 장애 뉴런에서 생성된 외부화된 포스파티딜세린(ePtdSer)에 의해 가속화된다는 것을 확인하였다.

- o 미세아교세포의 TREM2 수용체가 A β 로 유발된 신경세포의 ePtdSer 부위를 인지하여 ePtdSer 과 공존하는 A β 를 제거하는데 핵심적인 역할을 함을 확인
- o TREM2와 A β 의 상호작용이 외부적인 신호에 의해 규제되며, 특히 ePtdSer의 역할이 크다는 새로운 시각을 제시
- □ 연구팀은 또한 산발성(CRISPR-Cas9 기반 APOE4 타입의 역분화줄기세포)과 가족성 (APPNL-G-F/MAPT 이중 Knock-In 마우스) 알츠하이머병 모델 미세아교세포의 TREM2 수준이 감소하고 ePtdSer 양성 $A\beta$ 플라크에 대한 식세포 활동이 부족한지 여부를 조사하였다.
- o 산발성 및 가족성 알츠하이머병 미세아교세포에서 TREM2 수준 감소로 인해 ePtdSer과 공존하는 $A \beta$ 를 제거하는 능력이 감소됨을 확인
- □ 묵인희 교수는 "알츠하이머병 진행 중 ePtdSer의 존재와 관련하여 A β 플라크의 TREM2 의존 성 미세아교세포 식균 작용에 대한 새로운 시각을 제시한 연구"라며 "이번 연구는 미세아교세포가 어떻게 베타-아밀로이드 병변에 이끌리고, 이를 처리하는지를 밝힘으로써, 면역기반 알츠하이머병 치료에 새로운 전망을 제공할 것으로 기대된다"고 연구의 의의를 설명했다
- 이 이번 연구는 $A\beta$ 플라크의 미세아교세포 식균작용에서 ePtdSer의 역할에 초점을 맞춰 다양한 이미징 기술과 알츠하이머병 환자 iPSC 기반 첨단 배양 모델 시스템과 마우스 모델을 사용하여 TREM2 매개 $A\beta$ 플라크 제거의 원동력을 밝혔다. TREM2-ePtdSer 축을 통해 미세아교세포 $A\beta$ 플라크 식균작용에 대한 새로운 통찰력을 제공한다는 점에서, 알츠하이머병 치료에 새로운 시각을 제공한 중요한 진전으로 평가된다.

□ 연구결과

Microglia gravitate toward amyloid plaques surrounded by externalized phosphatidylserine via TREM2

Jong-Chan Park, 1,2,3,# Jong Won Han, 4,# Woochan Lee, 4,5 Jieun Kim, 4 Sang-Eun Lee, 6,7,8,9 Dongjoon Lee, 4 Hayoung Choi, 4 Jihui Han, 4 You Jung Kang, 1,2 Yen N. Diep, 1,2,10 Hansang Cho, 1,2,10 Rian Kang, 2,3 Won Jong Yu, 2,3 Jean Lee, 11 Murim Choi, 11 Sun-Wha Im, 12 Jong-Il Kim, 5,11,13,14 Inhee Mook-Jung, 4,15,17,*

(Advanced science)

□ 용어설명

- 1. 알츠하이머병(Alzheimer's disease)
 - ㅇ 치매를 유발하는 가장 흔한 원인으로 베타-아밀로이드 $(A \beta)$ 의 축적으로 인한 아밀로이드 신

경반 $(A \beta \text{ plaque})$ 의 형성과 타우 (Tau) 단백질이 신경 섬유 다발(neurofibrillary tangle)을 형성해 환자의 뇌 조직에서 특징적으로 관찰되며 뇌 손상으로 의한 기억 및 인지기능 저하가 나타나는 대표적인 퇴행성 뇌질환

2. 베타 아밀로이드(beta amyloid)

o 알츠하이머병 환자 뇌 실질에 비정상적으로 축적되어 신경반(neuritic plaque)을 형성하고 주 변 세포에 독성을 나타내는 단백질

3. 미세아교세포(Microglia)

- 외에 거주하는 대표적인 선천 면역세포로서 평상시에는 뇌 속 주변 환경을 탐지하고 시냅스 가지기, 손상된 신경세포나 이물질, 감염원으로부터 뇌세포를 보호하기 위해 면역 반응을 일으키는 신경교세포
- ο 알츠하이머병의 주요 원인 물질인 $A\beta$ 단백질을 감지하면 활성화되어 포식·분해하는 청소부 역할을 하나, 지속적인 $A\beta$ 자극으로 면역기능을 상실한 경우 병의 진행을 악화시키는 세포

4. TREM2 (Triggering receptor expressed on myeloid cells 2)

ㅇ 뇌에서는 주로 미세아교세포가 발현하고 있는 수용체로써 미세아교세포가 $A\beta$ 와 Tau을 둘러 싸고 식균작용을 할 수 있게 하며, 이동 및 생존에 관여

5. 포스파티딜세린 (Phosphatidylserine)

이 세포의 생존, 분화, 그리고 신호 전달에 중요한 역할을 하며, 세포가 죽을 때 세포 표면으로 노출되어 다른 세포에게 '나를 제거하라(eat me)'신호를 보내는 역할을 한다.

6. 뇌 어셈블로이드 (Brain assembloid)

 기존 뇌 오가노이드는 신경 외배엽 유래이기 때문에 난황 난 유래 미세아교세포가 존재하지 않기에 본 연구팀이 뇌 오가노이드와 미세아교세포를 공배양하여 인간의 뇌를 유사하게 모 방할 수 있는 뇌 어셈블로이드를 만듦